Copied to
clipboard

G = C5×C8⋊C22order 160 = 25·5

Direct product of C5 and C8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C8⋊C22, D82C10, C407C22, C20.63D4, SD161C10, M4(2)⋊1C10, C20.48C23, C8⋊(C2×C10), (C5×D8)⋊6C2, C4○D42C10, (C2×D4)⋊5C10, D42(C2×C10), Q82(C2×C10), C4.14(C5×D4), (D4×C10)⋊14C2, (C5×SD16)⋊5C2, C2.15(D4×C10), C10.78(C2×D4), (C2×C10).24D4, C22.5(C5×D4), (C5×D4)⋊11C22, (C5×M4(2))⋊5C2, C4.5(C22×C10), (C5×Q8)⋊10C22, (C2×C20).69C22, (C5×C4○D4)⋊7C2, (C2×C4).10(C2×C10), SmallGroup(160,197)

Series: Derived Chief Lower central Upper central

C1C4 — C5×C8⋊C22
C1C2C4C20C5×D4C5×D8 — C5×C8⋊C22
C1C2C4 — C5×C8⋊C22
C1C10C2×C20 — C5×C8⋊C22

Generators and relations for C5×C8⋊C22
 G = < a,b,c,d | a5=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 116 in 68 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, D4, Q8, C23, C10, C10, M4(2), D8, SD16, C2×D4, C4○D4, C20, C20, C2×C10, C2×C10, C8⋊C22, C40, C2×C20, C2×C20, C5×D4, C5×D4, C5×D4, C5×Q8, C22×C10, C5×M4(2), C5×D8, C5×SD16, D4×C10, C5×C4○D4, C5×C8⋊C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C2×C10, C8⋊C22, C5×D4, C22×C10, D4×C10, C5×C8⋊C22

Smallest permutation representation of C5×C8⋊C22
On 40 points
Generators in S40
(1 18 31 35 14)(2 19 32 36 15)(3 20 25 37 16)(4 21 26 38 9)(5 22 27 39 10)(6 23 28 40 11)(7 24 29 33 12)(8 17 30 34 13)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 23)(19 21)(20 24)(25 29)(26 32)(28 30)(33 37)(34 40)(36 38)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)(34 38)(36 40)

G:=sub<Sym(40)| (1,18,31,35,14)(2,19,32,36,15)(3,20,25,37,16)(4,21,26,38,9)(5,22,27,39,10)(6,23,28,40,11)(7,24,29,33,12)(8,17,30,34,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(25,29)(26,32)(28,30)(33,37)(34,40)(36,38), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40)>;

G:=Group( (1,18,31,35,14)(2,19,32,36,15)(3,20,25,37,16)(4,21,26,38,9)(5,22,27,39,10)(6,23,28,40,11)(7,24,29,33,12)(8,17,30,34,13), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(25,29)(26,32)(28,30)(33,37)(34,40)(36,38), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40) );

G=PermutationGroup([[(1,18,31,35,14),(2,19,32,36,15),(3,20,25,37,16),(4,21,26,38,9),(5,22,27,39,10),(6,23,28,40,11),(7,24,29,33,12),(8,17,30,34,13)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,23),(19,21),(20,24),(25,29),(26,32),(28,30),(33,37),(34,40),(36,38)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32),(34,38),(36,40)]])

C5×C8⋊C22 is a maximal subgroup of   D2018D4  M4(2).D10  M4(2).13D10  D20.38D4  SD16⋊D10  D85D10  D86D10

55 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B5C5D8A8B10A10B10C10D10E10F10G10H10I···10T20A···20H20I20J20K20L40A···40H
order122222444555588101010101010101010···1020···202020202040···40
size112444224111144111122224···42···244444···4

55 irreducible representations

dim111111111111222244
type+++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4C5×D4C5×D4C8⋊C22C5×C8⋊C22
kernelC5×C8⋊C22C5×M4(2)C5×D8C5×SD16D4×C10C5×C4○D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C20C2×C10C4C22C5C1
# reps112211448844114414

Matrix representation of C5×C8⋊C22 in GL4(𝔽41) generated by

16000
01600
00160
00016
,
0010
00040
0100
1000
,
1000
04000
00040
00400
,
1000
0100
00400
00040
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,0,0,1,0,0,1,0,1,0,0,0,0,40,0,0],[1,0,0,0,0,40,0,0,0,0,0,40,0,0,40,0],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40] >;

C5×C8⋊C22 in GAP, Magma, Sage, TeX

C_5\times C_8\rtimes C_2^2
% in TeX

G:=Group("C5xC8:C2^2");
// GroupNames label

G:=SmallGroup(160,197);
// by ID

G=gap.SmallGroup(160,197);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-2,505,1514,3604,1810,88]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽